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Abstract. In this study a general bead-spring model is used for predicting some rheological properties of a cubic
bead-spring structure of arbitrary size immersed in a Newtonian solvent. The topology of this bead-spring structure
is based upon the well-known cubic crystals (SC, BCC or FCC) and it consists of equal Hookean springs and beads
with equal friction coefficients, while hydrodynamic interaction is not included. An appropriate combination of
the equations of motion, the expression for the stress tensor and the equation of continuity leads to an explicit
constitutive equation with three sets of relaxation times belonging to the three types of bead-spring cubes (SC,
BCC or FCC). For small-amplitude oscillatory shear flow it is found that the three relaxation spectra, which are
significantly different, result in dynamic moduli which differ mainly in one aspect: the characteristic SC, BCC
and FCC time scales are different. The BCC and FCC time scales can be obtained by multiplication of the SC
time scale by the ratioaf ¢/ P°C and M 5¢/ M ¢ respectively, wheras ¢, 31P°C and M ¢ denote the number

of springs in the three types of cubic bead-spring structures.
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1. Introduction

During the past forty years several bead-spring models have been developed to predict the
rheological properties of a dilute solution of flexible polymer molecules in a Newtonian
solvent. In our previous paper [1] we generalized the existing bead-spring models in such
a way that the following four features were incorporated simultaneously:

() the linear (Hookean) springs may have different spring moduli,
(i) the friction coefficients belonging to the beads may be different,
(iii) pre-averaged hydrodynamic interaction may be included and
(iv) the geometry of the bead-spring structure may contain cycles.

In this paper we consider bead-spring structures of arbitrary size with a topology based
upon the well-known cubic crystalse. the simple cubic (SC) lattice, the body-centered cubic
(BCC) lattice and the face-centered cubic (FCC) lattice. Throughout this paper we restrict
ourselves to cubic bead-spring structures, which consist of equal Hookean springs and beads
with equal friction coefficients, while hydrodynamic interaction is not included.

In subsequent publications we will modify the bead-spring formalism considered in this
paper by replacing the Hookean springs by nonlinear ones with nonzero equilibrium lengths
and we will use this new formalism for the modeling of a colloidal crystalthe beads will
represent the charged colloidal particles and the nonlinear springs the inter-particle forces.



76 A.l. M. Denneman et al.

The outline of this paper is as follows. In Section 2 we present some general aspects about
the topology of the three types of bead-spring cubes (SC, BCC and FCC). In Section 3 we
discuss a bead-spring model which is valid for all kinds of Hookean bead-spring structures and
we use this model for calculating the spectrum of relaxation times belonging to a bead-spring
cube (SC, BCC and FCC) immersed in a Newtonian fluid. These three relaxation spectra
appear to be significantly different and the rheological consequences of these differences are
investigated in Section 4. In Section 5 we give some concluding remarks about the results
obtained in this paper.

2. The topology of a bead-spring structure

2.1. THETr-, - AND f-REPRESENTATION

To describe the topology of a bead-spring structure consisting btads and > N —1
springs we first introduce, according to the basic terminology of graph theory [2, 3], the
following two concepts: thespanning treeand thefundamental cyclesA spanning tree is
a substructure of the entire bead-spring structure which includes all tremds and has a tree
geometryj.e. we have to leave ou¥ — (N —1) springs in such a way that all beads still keep
attached to each other. The fundamental cycles are strongly related to the spanning tree and the
M — (N —1) omitted springs. Namely, if we add an omitted spring to the chosen spanning tree,
then the obtained cycle is defined as a fundamental cycle. Consequently theffe éke—1)
fundamental cycles associated with a chosen spanning tree.

We may describe the configuration of a bead-spring structure by using one of the following
vector representations:

() ther-representation: a set @f bead position vectons,, r,, ..., r,y with respect to some
fixed origin in space,
(ii) the F-representation: a linearly dependent setMbfconnector vectors,, f,, ...,y

belonging to all the springs of the entire bead-spring structure and
(iii) the F-representation: a linearly independent sevef 1 connector vectors,, f,,...,Fy_;
belonging to the springs of a chosen spanning tree of the entire bead-spring structure.

Thet-representation coincides with tifierepresentation for a bead-spring structure with
a tree geometryi,e. no cycles in its geometry. The interrelations between the bead position
representation; and the two connector vector representationandf, are given by

N N
I7a = Z Gai ri, fb = Z Gbi ri, Fa = Dab i’\h- (1)
i=1 i=1

We obtain the matrix elements 6fandG by noting that each connector vector is equal to the
difference of the position vectors of two directly connected begelssach row ofG andG
consists ofNV —2 row elements~of value 0, one row eIeLnent of value 1 and one row element of
value—1, while theM rows of G and theN —1 rows of G are related to th/ springs of the
entire bead-spring structure and tNe-1 springs of the chosen spanning tree, respectively.
The matrix elements oV —1 rows of D are obtained when we realize that tive-1
independent vectoifs, elonging to the spanning tree are, by definition, identical toNhel
corresponding connector vectdts(one-to-one coupling) and we obtain the matrix elements
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Table 1. The primitive translation vector&,, a, andas belonging to a
SC, BCC and FCC lattice. The vectas, e, ande; form an orthonor-
mal basis in space and the parametgefers to the repeated cube of

volumed?.
SC BCC FCC
a aey fa(—ec+ey +e) la(ey+e)
a aey Ja(er—e +e) a (e +e)
a ae; a (e +e —e) a(ex +e)

of the otherM — (N —1) rows of D by noting that each of thé/— (N —1) fundamental
cycles relates, by definition, one connector vegtpmwith two or more independent con-
nector vectors,. o

The particular values of all the matrix elements@f G and D depend upon the chosen
directions of the connector vectadrs andf,, the chosen spanning tree and the schemes used
to number the vectons, F, andf,.

2.2. QuBIC CRYSTALS (SC, BCCAND FCC)

In this paper we are interested in the prediction of some rheological properties of a crystal-like
bead-spring structure immersed in a Newtonian fluid. Here, the topology of such a structure
is based upon the periodic structure of a real crystl,

(i) we first place each bead at a lattice point of a real crystal,
(i) we then connect each bead with its nearest neighbor beads by springs and
(iii) after a systematic numbering of the beads and the springs we allow them to move.

Due to the motion of the beads, the configuration of the bead-spring structure does not
have to resemble the periodic ordering of a real crystla crystal-like topology does not
imply a crystal-like configuration.

We now restrict ourselves to crystal-like bead-spring structures with a topology based upon
the cubic crystald,e. the simple cubic (SC) lattice, the body-centered cubic (BCC) lattice and
the face-centered cubic (FCC) lattice. Each lattice point of a cubic crystal can be described by
a lattice vectos,,, defined as

Siyz; =X + Y& + 28, (2)

wherex, y andz are arbitrary integers and the three primitive translation veetoi®s anda,
belonging to a SC, BCC and FCC lattice are given in Table 1. The lattice vector of an arbitrary
lattice point subtracted by the lattice vector of its nearest neighbor is denoted by sxector
and it appears that this vector can take the following values

SC (6 near. neighborsis € {+a,, t+a,, +as},
BCC (8 near. neighborsks € {+a,, +a,, +a;, +(& + & + &)},
FCC (12 near. neighbors)s € {+a,, t+a,, +a;, +(@ — &), +(@ — &), +(@ — &)}.

Instead of considering an infinitely large cubic bead-spring structure, we consider a struc-
ture consisting ofV = K3 beads,.e. a K x K x K cubic bead-spring structure where the
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indices of the lattice vectors, . are bounded as:, y, z € {0, 1, ... ,(K—1)}. For numbering
purposes we place thE€® beads at the lattice points of a cubic crystal (SC, BCC and FCC)
and we choose the following interrelation between the index of bead position vecnd

the indices of lattice vecta,,,

i =Sq; =X +ya& +z38; With i=K’x+Ky+z+1 3)

Each connector vectdi, is related to a spring connecting a bead with one of its nearest
neighbor beads,e. we have X?(K — 1) connector vectors, related to springs in tha;, a,
anda-direction (SC, BCC and FCC)K —1)3 connector vectors, related to springs in the
(a, + &, + ay)-direction (BCC) and & (K —1)2 connector vectors, related to springs in the
(a,—ay), (as—a,) and(a, — ay)-direction (FCC). Thus, & xK xK cubic bead-spring structure
consists ofk 3 beads and a certain number of springs denoted by the paramétérasbee
andM'cc je.

SC:3K2(K—1), MbCC MSC+(K )

M™ = M+ 3K(K — 1) 4)

In Table 2 we give our chosen interrelation between the index of connector Vgetod the
indices of two different lattice vectorg Q.s,,, ands;1),.). For example, for a2 2x 2 cubic
bead-spring structure with a topology based upon a SC lattice, the resulting structure is given
in Figure 1a. If we add one springé€. f13 = S111— Soo0) t0 the depicted structure in Figure 1a,
we obtain a structure which corresponds to:a 2 x 2 cubic structure with a topology based
upon a BCC lattice and, similarly, if we add six spring®.(f13 = S10 — S100 ---, 18 =
S110 — So11) We obtain a structure which corresponds to & 2x 2 cubic structure with a
topology based upon a FCC lattice.

AN T
i 5
S~ d/ @

s

,’

(@)

Figure 1 A 2x 2x 2 cubic bead-spring structure with a topology based upon a SC lattice (a) and its chosen
spanning tree (b). In both figures: the lower number inside each bead refers to fdesad position vectar;

and the upper three numbers inside each bead refer to indigeand: of lattice vectors, ;. The numbering of

the linearly dependent set of connector vectgrand the linearly independent set of connector vedigis given

in (a) and (b), respectively. We note that the chosen spanning tree 22 cubic structure with a topology
based upon a BCC or FCC lattice is identical to the one based upon a SC lattice, which is shown in (b).
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Table 2. The chosen numbering of the connector vecirsandf;, in relation to the indices of two different
lattice vectors. We note that the six indices of these lattice vectors are always non-negative and that they may
never exceed the value —1.

SKZ(K — 1) springs ina;, a, andag-direction (SC, BCC and FCC)

a = S(x+1)yz — Styz With a=K%+Ky+z+1
@ =Se(y+1)z — Styz With a=K(K —Dx + Ky +z+1+ K%K — 1)
@ = Sey(41) — Soyz With @ = K(K — Dx + (K — Dy +z+ 1+ 2K%(K — 1)

-~ = ==

(K — 1)3 springs in(a, + &, + ag)-direction (BCC)
Fa = S+ (4D (4D — Sryz With a = (K — D%x + (K =Dy +z+1+3K%(K — 1)

3K(K — 1)2 springs in(a; — &), (a3 — &) and(a; — ag)-direction (FCC)

@ =St(y+l)s — Saidye With a=K(K —Dx + Ky +2z+1+3K4K - 1)
@ = Sey4l) — S+ With a= (K —D%x + (K =Dy +z+1+ K(K — 1)(4K — 1)
a =Sx+lyz — Sry(z+1) With a=K(K -Dx+ (K —Dy+z+1+ KK —1)(5K —2)

- = =

(K3 — 1) springs of the spanning tree &, a, andag-direction (SC, BCC and FCC)

b:s(x+1)yz_5xyz with b:K2x+Ky+Z+l
b = S00(z+1) — S00z with b=z4+1+ K(K2 )

- S =

The connector vecton, belonging to the springs of a chosen spanning tree are numbered
in the same manner as the vectygsee Table 2) and, for example, for a2x2 bead-spring
cube with a topology based upon a SC, BCC or FCC lattice, the chosen spanning tree is given
in Figure 1b. Indeed, these three spanning trees (SC, BCC and FCC) are chosen to be identical
to each other.

2.3. THE MATRICES é, aAND D BELONGING TO A CUBIC BEAD-SPRING STRUCTURE

In the previous section we presented a systematic numbering of the beads and the springs.
Our way of numbering leads to the following expressions for the maitridtefined by (1)
belonging to ak x K x K bead-spring cube with a topology based upon a SC, BCC or FCC
lattice

G ® 6k ® ¢ - -
~ ~ Gs¢ ~ GSC
Gsc: 51( ®RG® 51( , Gbcc: , chc — , (5)
Hbcc chc
kR ®G

where the matrice#f *°¢ and H ° are given by

HY* - EQEQE+FQFQF,



80 A.Il. M. Denneman et al.
EQF R — FQRE QRS
H=| s, E®F -8, FQE |. (6)
FQRRE —EQR5QF

The symbol® used in (5) and (6) denotes the so called Kronecker product (also known as
direct product or tensor product, seq.Horn and Johnson [4] and Davis [5] for its basic
properties). This product is defined for an arbitrgly« P matrix X and an arbitranR x S
matrix Y as

XuY ... XY
X®Y = oo , (7)

Xo¥ ... XopY

in which X®Y isaQR x PS matrix. The matrix$, in (5) and (6) is aP x P identity matrix
and the(K —1) x K matricesE, F andG in (5) and (6) are defined as

E = (O(K—l)xl 81(-1) s F = (_8k—1 O(K—l)xl) y G=E + F, (8)

where matrix0O,, is a Q x R zero Qﬁatrix,iA.e. all its matrix elements are zero. We note that
matrix G is identical to the matrice6 andG belonging to a linear Rouse chain consisting of
K beads an& —1 springs [6].

As mentioned in Section 2.2 the three spanning trees belonging toax K bead-spring
cube based upon a SC, BCC and FCC lattice are chosen to be identical to each other and,
consequently, we obtain the following expression for the mairidefined by (1)

G ® 5 ® ¢
asc = abcc = afcc =1 G®d OK(K—l)xKZ(K—l) . 9)

G O(K—l)xl((l(z—l)

The expressions for the matrix defined by (1) belonging to K x K x K bead-spring cube
based upon a SC, BCC and FCC lattice are somewhat more complex than the expressions for
the matricesGS¢, G, G'°¢, GS¢, GP*candG ', i.e.

81(—1 &® 81( ® 81( OKZ(K—l)xK(K—l) OKZ(K—l)x(K—l)
DSt = S ®G®6 Vi®0x1®8k Oxax 1.1 ) (10)
S ®6:®G Vi® S @G Vi@V ®bka

Dsc Dsc
pbee pfec — (11)
bcc bee |’ fcc fcc |’
I+ 1 I+ 1
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where the matricesPc, 12, 11¢ and I/°¢ are given by
P = (S*@EQE Vi1®S*®E Vi1 ®Vi1®8c1), (12)
= (S"®F®F —Vii®S'®F Oy ypx)- (13)
SE®@F ®6 Vka®8k1®8  Ogixr2ax-y)
[ =S @E®F Vi ® SE®F Vi ®Vi. ®8. |, (14)
KSF®8K®E —Viai® S ®FE -V i Q@Vy ®6x

( —ST® F ® & Oxk-12xkx-1) O k-12x(k-1)
=] -S ® FRE —Vy ®ST®E Ogx2.u |- (15)

K —-SEFQ® ok @ F Vi1 ®S ®F OK(K—1)2><(K—1)

Here, the column vectdv, is a P x 1 vector with all its elements equal to one and the matrix
SEisa(K —1) x (K —1) step matrix defined as

0ifi<j i=1...(K—-1
SE = with , (16)
1ifi>j j=1...(K -1

i.e. matrix S€ is a lower triangular matrix with all its nonzero elements equal to one. The
(K —1)x (K —1) step matrixSF andK x (K —1) step matrixS are related to matri$* as

01><(K—l)
SF =681 — SF, S = , (17)
SE

As an example we give in appendix A the nonzero matrix elements of the mafiée& ¢
and D¢ belonging to a & 3x 3 cubic bead-spring structure.

We note that each row afi*¢ (or D39 is related to one of thé/3° springs of a cubic
structure with a topology based upon a SC lattice and, in the same way, each HR&F ¢or
1% 129 and H ¢ (or 1]°°+ 1)) is related to one of thés*°— M S¢and M ¢ — M ¢ springs,
respectively, which we must add to the cubic structure based upon a SC lattice for creating a
cubic structure based upon a BCC and FCC lattice, respectively.

3. Bead-spring model for Hookean structures

3.1. BEAD-SPRING STRUCTURE WITH AN ARBITRARY TOPOLOGY

Up to now we have obtained expressions for the topology mat€ices and D belonging to
the three types of bead-spring cubes (SC, BCC or FCC), but we have not mentioned anything
about

the forces acting on each bead,
the equations of motion for the beads and
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the expression for the stress tensor.

Here, we will repeat briefly a bead-spring formalism presented in a previous paper [1],
which is valid for Hookean bead-spring structures with an arbitrary topology immersed in a
Newtonian fluid.

Omitting external forces, such as gravitational and electrical forces, we observe that a
beadi experiences, in principle, three kinds of forces: the bead interaction f@rcthe
Brownian forcef? and the hydrodynamic drag foré& The expressions for these three forces
are given by

fl= —c (@, —L-r1)), 1
i ar, : i=—c( ri) (18)

M N
o= _Zaaifa, fo _ —kTM

a=1
wheref , is the spring force parallel to connector veckgr k the Boltzmann constant; the
absolute temperatures (r", ¢) the distribution function in configuration space of the set of
N beads,¢ a friction coefficient,L - r; the ambient velocity of the solvent at beadthe
velocity gradient tensdr is the same at all points in the flow field, but it may be dependent on
time r) andf; the flux velocity of bead appearing in the equation of continuity fer(r", r)
given by

W D
5_—;@«%. (19)

Neglecting inertial effects we obtain the force balahe- f,h +f,.b = 0 and by combining this
force balance with (18) we obtain the following equation of motion

. 1 dlogyr Mo
n_Ln—E<H“8” +§¥%n). (20)

a

Throughout this paper we are only considering bead-spring structures consisting of equal
Hookean springs with spring forcésgiven by

f,=«f,, (21)

wherek is the spring modulus belonging to each spring. By substituting (21) in (20) and by
using the transformations as given in (1), we transform (20) into the following equations of
motion

. 1 dlogyr M

fi=L-r;,—— kT Aialal, 22
{< o +x; (22)

. I QA dlogy

ra:L'ra—EZAaj<kTT~j+Krj), (23)

j=1

R n lN_lA dlo " M "

fpob=L -f) —— bj kT ,\gw-i-KZMjkrk R (24)
¢ j=1 ar; k=1
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where the symmetric matrices=G’G, A=GG’ andA=GG' are generalizations of the
matrix used by Rouse [7, 6] and we note that these three matrices are positive (semi)definite,
i.e.the nonzero eigenvalues of these matrices are always positive. The symmetrichhatrix

(24) is defined by the relatio = D" D and the distribution functiong and+ in (23) and

(24) are defined as

Y0 =g n =g Ev o, (25)

in which it is understood that the sets of vectofs ¥ andf"~* are interrelated accord-

ing to (1). In our previous paper [1] we showed that these equations of motion i, the

f andf-representation can be transformed into an equation of motion in a normal modes
representation,e. the é-representation:

- a; d log ¥
f=veg - S (T2 ). (26)

where the vector§,, &,, ..., §,_, represent a set of normal coordinate vectors. The positive
parametersy; in (26) are the nonzero eigenvalues of the mattixA or MA * and theg-
dependent configuration distribution functignin (26) is defined as

VE L=y, n=9F, 0 =9E" 0. (27)
For an incompressible fluid the general expression for the stress fEnsor
T=—-pl+TE (28)

wherel is a unit tensorp the undetermined pressure and the extra stress térfigbe part of
the stress tensar that, for a given fluid, is determined by its flow history. An expression for
TE in terms of microscopic quantities is the so called ‘Kramers form’ [8).6],

M
TS =2y — (N — DnkT1+n ) (Fufa). (29)

a=1

wherens is the viscosity of the Newtonian solvent,the number of bead-spring structures

in a unit volume D = %(L + L) the rate-of-strain tensor ar{d- -) denotes an average with
respect to the distribution function in configuration space. Throughout this paper we are only
considering the case that= 1/ Vs, i.e. one bead-spring structure in a volurig In the &-
representation the extra stress tengbim (29) is given by

N-1
TE=2pD+ ) T/ (30)
i=1

with the particle contribution to the stress tensor given by [1]

P Ky KT
T, = Vg(&i&i) A 1. (31)

* Indeed, the three sets of nonzero eigenvalues belongidg #oand M A are identical [1].
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By transforming the equation of continuity fgr(r*, ) given by (19) into an equation of
continuity fory ("%, 1), by multiplying both sides of the resulting equation by the dy§gic
and by integrating it over the entigespace we obtain

d . .
E(Ei£i>:<§i§i>+<£i£i>- (32)

By combining (26), (31) and (32) we obtain a constitutive equation of the upper convected
Maxwell type

re STE AT,
A

D, (33)
where the relaxation timeg are equal t@ /(2«¢a;) and isé/58t the upper convective derivative
defined as

8T? _ dr’?
st dr

L-TP—TP.-L". (34)

3.2. RELAXATION TIMES BELONGING TO A CUBIC BEAD-SPRING STRUCTURE

To calculate the relaxation times belonging to a cubic bead-spring structure consisting
of equal Hookean springs immersed in a Newtonian fluid, we must determine the nonzero
eigenvalues of the matrit, A or MA belonging to &K x K x K bead-spring cube (SC, BCC
or FCC) and substitute these eigenvalues the relationk; = ¢/(2«¢a;). In this section we
are only considering the eigenvalues of mattix o

By using (5) we obtain the following expressions for the symmetric matexG” G

A =G"GR; R +5x G G Q8 + 8¢ R ® GG, (35)
Abee — ASC 4 HbccTHbcc’ (36)
Afee — ASC 4 chcTchc' (37)

For the determination of the nonzero eigenvalugsof matrix A%® we make use of Theo-
rem 4.4.5 in Horn and Johnson [4f.

THEOREM 1. If the eigenvalues of an arbitrary? x P matrix X and an arbitrary O x 0
matrix Y are given byx,, x,, ..., x, andyi, y,, ..., y, respectively, then the eigenvalues of
the so called Kronecker sudp, ® X)+ (Y ® ép) are given byx; +y; withi =1... P and

j=1...0.
and we use the fact that tHé x K matrix G" G appearing in (35) is identical to the Rouse

matrix belonging to a linear chain consisting &f beads andK — 1 springs and that the
K eigenvalues of;” G are given by [6]

4sin2<;—7;<) with i=0...(K-1).
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From Theorem 1, the known eigenvalues of matikG and the expression for matrix
A given by (35) we obtain an expression for th€ —1 nonzero eigenvalues™ and by
substituting this result in the relation for the relaxation tirags=¢ /(2«a>°), we obtain

A,
8k (smz(ﬁ) +sif (&) + smz(ﬁ))
i=K%+KIl+m
_ k=0...(K -1
with (38)
[=0...(K=-1
m=0...(K—-1),

where we have to exclude the case thatO, / =0 andm =0. We note that all these relaxation
times are larger than the minimum relaxation tiifg, defined by

o= o (39

The expression for th& 2 — 1 relaxation times.® given by (38) was also obtained by Van
der Vorstet al. [9] and they managed to find this expression without explicitly determining
eigenvalues of matrix¥ ¢ or some other matrix. However, their straightforward method is not
easily extended to the case of cubic bead-spring structures with a topology based upon a BCC
or FCC lattice instead of a SC lattice.

Although it was rather easy to find an analytical expression for the nonzero eigenv&lues
of matrix AS¢, we did not succeed in finding analytical expressions for the nonzero eigenvalues
aP®®anda® of the matricesA P and A™°, respectively. Therefore, we calculated eigenvalues
aP°*anda/® numerically by using the software packaggstave 1.1.-ndScilab-2.2 We note
that no significant differences are observed between the numerical results obtained by these
two software packages. Furthermore, there is no significant difference between the analytical
expression for>° and the numerically-determined eigenvalug$

We note that thek® x K2 matricesA® and A™¢ given by (36) and (37) are very large
for a relatively small value oK (i.e.for K =20 both matrices consist of 64 millior=(K ®)
matrix elements) and our limited computing power appears to be sufficient for calculating the
1727 nonzero eigenvalue8® anda* of the 172&1728 matricesi "*cand A", respectively,
belonging to a 1% 12x 12 cubic bead-spring structure, but not for larger cubic bead-spring
structuresi(e. K > 12).

To compare the three sets of relaxation timgs A and [, it is convenient to introduce
the functionH (A, Alog;oX) which is defined as the number of relaxation timesatisfying
log;gA—Alogipr < 109192 < 10919 A+A l0g;gA. This relaxation spectrurff (A, Alogygi)
is calculated for & x K x K cubic bead-spring structure from the expressionifrgiven
by (38) and, for relatively small structurese( K < 12), from the numerically calculated
relaxation times\”*® = ¢ /(2«caP®®) andA*® = ¢ /(2ca*®). In Figure 2 we depict the reduced
relaxation spectrunt (1, 0-0022/(K3-1) as a function of the reduced timga 3¢ for four
different casesi.e. two corresponding with a SC lattic& (= 1000 andK = 12), one with a
BCC lattice K =12) and one with a FCC lattic&k(=12).



86 A.Il. M. Denneman et al.

The four relaxation spectra in Figure 2 differ significantly from each other and we note that
each spectrum in Figure 2 consists of 614 vertical lines (including the lines with zero lengths,
i.e.the ones wheréf (A, 0-0022 = 0), which correspond to the 614 nonoverlapping regions
bounded by logy A —0-0022 and log, 2+ 0-0022 with (A/A5¢ ) € {0-6, 0-6 x 10P0044
0-6 x 1079973,

The difference between Figure 2a (SC lattice &he= 1000) and Figure 2b (SC lattice
and K = 12) is not surprising due to the fact that in Figure 2a we have neaflyeléxation
timesA;“to be distributed over 614 regions, while in Figure 2b we only have 1727 relaxation
timesA S In fact, if K increases, then the reduced relaxation spectim 0-0022/(K3-1)
for K = 12 converges to the one fa&& = 1000 and it does not really change anymore for
larger K. Furthermore, we observe that almost all relaxation tikfésre in the region ;<
A% < 10435, and by using (38) we find that, for large, the maximum relaxation time;s,,
is given by

1208 K2 ¢K?

)Lsc _ min
max 2 2w 2

(40)

The relaxation spectré (1, 0-0022 in Figures 2b (SC), 2c (BCC) and 2d (FCC) corre-
spond toK x K x K cubic bead-spring structures of the same sie=(12). As mentioned
in Section 2.2, we construct the last two cubic structures (BCC and FCC) by simply adding
some springs¥ °°— MS°=1331 andM " — M ¢=4356) to the first cubic structure (SC and
M3¢=4752). As a result of this adding of springs the relaxation tiog&§ and A/ are on
average smaller than the time¥’, as can be observed in Figure 2. In particular, the minimum

relaxation times. 5t andA St are given by
3 g
b f
At = At = —Aos = (41)

min 4 min @
and the maximum relaxation times belonging to &12x 12 cubic bead-spring structure are
given byrsS =176A5¢ | D = 16805 andA i =163)5C . By extrapolating the results for
K <12 to largeK we obtain
bcc ~ 4 fcc ~ sc 2
Ak N A = LA K2 (42)

We note that there are always three timéSwith valuex$S,,, two timesx.P with value RS

: i max? max
and one time.[° with valuex.f,.

4. Storage modulusG’(w) and loss modulusG” (w)

In the previous section we observed that the relaxation spectra belonging to the three types
of cubic bead-spring structures differ significantly from each other. In this section we are
interested in the rheological consequences of these differences for the cas& th& a K

cubic bead-spring structure is immersed in a Newtonian fluid of volugres which a small-
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Figure 2 The relaxation spectruril (A, Alogjgi = 0-0022 for a K x K x K cubic bead-spring structure:
(&) K = 1000 and a topology based upon a SC lattice,Kby= 12 and a topology based upon a SC lattice,
(c) K =12 and a topology based upon a BCC lattice andk(e} 12 and a topology based upon a FCC lattice.

amplitude oscillatory shear flow with angular frequengcys applied. The measurable rheo-
logical quantities are then the storage moduiligv) and the loss moduluS” (w) [6].

Instead of considering K x K x K cubic bead-spring structure (immersed in a Newtonian
fluid), we first consider the more general case of a structure with an arbitrary topology, which
consists ofV beads and/ equal Hookean springs (see Section 3.1). For this case we obtained
the constitutive equation given by (33) and it can be shown that the m@tuh) andG” (w)
are related to the relaxation timgsin (33) as follows [6]

N2
G (0) = — Z M (43)

(44)
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By substitutingh; = ¢ /(2xa;) in (43) and (44) we obtain for low frequencies  0)

L KTP20? 1\ kT %R 2

Gl = 25 Z(;) = 2 tr([MA] ) (45)
p kT{a) kT{a) ~q-1

G () — new = Za_, = v r([MA]™) (46)

and in the same way we obtain for high frequencies< co)

G =" -1, (47)

S

2kT«k ]\f 2kTk _~ 4k Tk
a;, =

Vo = Vet vMA) = Vra (49)

G"(®) —nsw =

In (45) and (46) we used the matrilk A = D’DGG’ instead of the equivalent matrices
A=G'G andA = GG for the reason that the first one is nonsingular (its inverse exists),
while the latter two are singular (their inverses do not exist). In (48) we used the following
relation for the trace of matrig/A *

tr(MA) =tr(A) =tr(A) = 2M. (49)

We emphasize that (49) is valid for any bead-spring structure consistinglmfads and
springs,i.e. the validity of this relation does not depend upon the specific topology of the
bead-spring structure. Thus, for high frequencies the storage mo@ulu3$ is proportional

to the number of springs in the spanning tree. (V —1) and the loss modulus” (w) —nsw is
proportional to the number of springs in the entire bead-spring strudtaraA).

4.1. QUBIC BEAD-SPRING STRUCTURE WITH TOPOLOGY BASED UPOSCLATTICE

The relaxation time&>° belonging to &K x K x K cubic bead-spring structure with a topology
based upon a SC lattice are given by (38) and by substituting these relaxation times in (43)
and (44) we can calculate the moddl (w) and G”(w) for different values ofK. These
calculations will indicate that three different frequency regions can be distinguisked,
low, an intermediate and a high frequency region. The two boundaries of these three regions
depend on the values of the minimum and maximum relaxation tirffgsandA ., as defined
by (39) and (40), respectively. For each region we have obtained asymptotic expressions for
the moduliG’(w) and G” (w), which are consistent with equivalent asymptotic expressions
obtained by Van der Vort al [9].

In the low frequency region and for lardé, i.e. wA S, K wAss,, < 1, the expressions for
G'(w) andG”(w) given by (45) and (46), respectively, are given by

G'(w) = —(wx )2 Z_:1<1—2)2 ~ 7596—( ASE V2 K4, (50)
- min asc min

i=1 i

* The firstM in (48) and (49) refers to the matrid = D”D, while the seconaV refers to the number of
springs in the entire bead-spring structure.
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” kT sc ~ 12 kT sC 3
G(@) —nsw = - (@hnin) > Jse ¥ 3034 (whin) K, (51)
S i=1 i S

wherea>*=¢ /(2 A7) with 1°¢ as defined by (38).

In the intermediate frequency region and for laigei.e. wAr5, K 1 K wips,, it is useful
to introduce a functiomy;,, as follows
sc_ ysc _ _ Ckim )Mrsncax
M= i = g 2)

where the functiorr,;,, is dependent upon the indicés/ andm in such a way that the
relaxation times.>° given by (52) are identical to the relaxation tim€s given by (38). By
noting that the values of the relaxation tim€3, given by (38) are bounded as

)“ﬁfl:ax SC sz )\'ﬁ']cax
iztm =g\ em2) 3)

we obtain that the values of the functiop,, are bounded as & ¢, < 2:47. By assuming

that the functiorry,,, may be approximated by a constairg, c;,, = c, by substituting (52) in

(43) and (44), by replacing the summations by integrations and by using the transformation
p%>=k?+124+m?, we obtain

Ak
m kT / (ccoks aX) dp ~ 36 kT 3/2

/ sc 3
G(w) ~ 2 Vs P ‘g (kascax) T Vs ( w)‘mln) K=, (54)
V3K,
)\SC
G (@) — o~ TEL [P COMRw) g SVBKT (e s (55)

2V, p4+ (C(,())\.sc

ma

X) 7 Vs

The deviations between these approximations and the exact calculation of the Gigduli
and G”(w) appear to be minimized (for largk) if we substitute the constants= 1.1 and
¢=0-9%in (54) and (55), respectivelje.

/ kT
G () ~ 2-77 (022 K3, (56)

" k
G"(w) — nsw ~ 3-0 7 (0135 K°. (57)

We note that (51) and (57) are identiceé. the frequency dependency of the loss modulus
G"(w) is in the low frequency region and in the intermediate region the same.
In the high frequency region and for dfl, i.e. 1 < wAys, < wirs,, the expressions for

G'(w) andG”(w) given by (47) and (48), respectively, are given by
kT
G'(w) = —(K° -1, (58)
Vs

* The constant = 0-9 does not satisfy the condition & ¢ < 2:47 as a result of the replacement of the
summations in (43) and (44) by integrations.
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Figure 3 The moduliG’(w) and G” (w) belonging to a 1008 1000x 1000 cubic bead-spring structure with

a topology based upon a SC lattice immersed in a Newtonian fluid wts O, i.e. (a) the reduced storage
modulus logg G’(w)Vs/kT(K3—1) as a function of reduced frequency !L@goxf'rfm (the dashed lines are the
asymptotic expressions given by (50), (56) and (58) and the thick line is its exact calculation) and (b) the reduced
loss modulus logy G” (w) Vs/kT(K3—1) as a function of reduced frequency i@gukrsncin (the dashed lines are
asymptotic expressions given by (51), (57) and (59) and the thick line is its exact calculation).

, 1kT _ 1kT -
G'(@) =nsw = G- (@hmin) ‘Mo = 57 (@hin) 'K*(K - 1), (59)
S S

whereMs¢=3K?(K —1) is the number of springs in K x K x K cubic bead-spring structure
with a topology based upon a SC lattice.

As an example we consider a 1000000x 1000 cubic bead-spring structure consisting of
equal Hookean springs and with a topology based upon a SC lattice, which is immersed in a
Newtonian fluid with viscosityys = 0. By substituting the 10-1 relaxation times. > given
by (38) in (43) and (44) and by evaluating the summations numerically, we obtain an exact
calculation of the modulG’(w) and G”(w). In Figure 3a we compare the exact calculation
of G'(w) with the three approximations for the storage modulus given by (50), (56) and (58)
and in Figure 3b we compare the exact calculatioG6{w) with the three approximations
for the loss modulus given by (51), (57) and (59). In both figures the two boundaries of the
three different frequency regions are given by,lg@x>% ) = 0 and logy(wA:S,) = —6-1
(i.e.log,g(wAss,,) = 0) and we observe that the approximations for the three frequency regions
do approximate the exact calculation of the moduli very well.

4.2. THE THREE TYPES OF BEABSPRING CUBES(SC, BCCAND FCC)

The moduliG’(w) and G”(w) belonging to the three types of bead-spring cubes (SC, BCC
and FCC) are obtained by substituting the relaxation tinfés\”° andA/°® in (43) and (44),
respectively. Here, the relaxation time¥ are given by (38) and, as mentioned in Section 3.2,
the relaxation time&P°® andA ! have to be calculated numerically, which was only possible,
due to our limited computing power, féf x K x K cubic bead-spring structures wikh < 12

and not for larger structures.
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Figure 4 The moduliG’(w) and G” (w) belonging to a 1% 12 x 12 bead-spring cube (SC, BCC and FCC)
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In Figure 4 we give the modulii’ (w) andG” (w) belonging to a 1Z 12x 12 bead-spring
cube (SC, BCC and FCC) consisting of equal Hookean springs immersed in a Newtonian fluid
with viscosityns=0. We observe that the three different relaxation spectra given in Figures 2b,
2c and 2d lead to moduli’ (w) andG” (w) which differ mainly from each other in one aspect:
shifting the SC moduli a distana#®*°~ 0-1 andd ° ~ 0.3 to the right along the reduced
frequency axis, we will obtain, approximately, the BCC and FCC moduli, respectively. In fact,
in every frequency region (low, intermediate and high) the frequency dependeacihd
slope) of the moduliG’'(w) and G”(w) can be considered to be independent of the specific
topology (SC, BCC and FCC) of the cubic bead-spring structure.

In the previous section we obtained asymptotic expressions for the mGdu) and
G”(w) belonging to aK x K x K cubic bead-spring structure with a topology based upon
a SC lattice. The same kind of asymptotic expression appears to be valid for the case that the
topology of a cubic bead-spring structure is based upon a BCC or FCC lattice, instead of a SC
lattice. For low frequencies and for largé we obtain expressions which are reminiscent of
(50) and (51)

kT kT
BCC: G'(w) ~ 4-375(60,\;%”)21(4, G'(w) — nsw ~ 2-275(wx~°,;$m)1(3, (60)

kT kT
FCC: G'(0) ~ 2-17(wx~°,;$m)21<4, G'(w) — nsw ~ 1.47(wx~°,;$m)1<3. (61)
S S

For intermediate frequencies and for lajewve obtain expressions which are reminiscent of
(56) and (57)

kT kT

BCC: G'() ~ 16~ (@2 Z)P K3 G() - ~ 22 (ki) K°. (62)
S S
kT kT

FCC: G'(@) ~ 08~ (@2 )P K3 G'(w) —nsw ~ 14—~ () K°. (63)
S S
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For high frequencies and for alf we obtain expressions which are reminiscent of (58) and
(59)

) kT , 1kT _

BCC: G'(v) = 75(1(3— 1), G (w) — nsw = 675(“”?"6"‘ LpgPee, (64)
kT 1kT

FCC: G'(w) = 7S(1<3 -1, G"(w) — nsw = 5. (wASS) "M e, (65)

At the beginning of this section we introduced the distang® andd¢. By combining
the expressions for the high frequency loss modditi&w) given by (59), (64) and (65) we
obtain thatd P°° = log, o(M°*¢/ M%) andd "¢ = log, (M ¢/ M 5°), where M ¢, M and M e
are defined in (4) and are equal to the number of springkisx& x K bead-spring cube (SC,
BCC and FCC).

The rheological consequences of these expressiong6rand d°¢ are interesting: if
we depict in a figure the reduced SC moduli||pG’(w) Vs/ kT (K3—1) and log,G” (w) Vs/
kT (K3-1) as a function of the reduced frequency Jogx ¢, then we observe that the same
figure is also valid, approximately, for the reduced BCC and FCC moduli, which are now
depicted as functions of the reduced frequenciegleg. s, M ¢/ M %) and log o(wASE, M5/
M), respectively. Thus, the characteristic SC time scale has to be multiplied by the ratios
M3/ MP¢ and MS/M™ to obtain the characteristc BCC and FCC time scale,

respectively.

5. Concluding remarks

So far we have given a bead-spring formalism about some rheological properti&€s@hak
Hookean bead-spring cube (SC, BCC and FCC) immersed in a Newtonian fluid. In subsequent
papers we will modify this formalism by replacing the Hookean springs by nonlinear ones
with nonzero equilibrium lengths and we will use this new formalism for the modeling of a
colloidal crystal.

The bead-spring formalism in this paper contains many results which will be useful for
our future work,e.g.the expressions for the topology matric8s G and D belonging to
a bead-spring cube (SC, BCC and FCC) given in Section 2.3 will not change if only the
characteristics of the springs are changed. Furthermore, at the end of Section 4.2 we mentioned
that the characteristic BCC and FCC time scales were obtained by simply multiplying the
characteristic SC time scale by the ratib&*®/ M and M ¢/ M, respectively, and it is
interesting to investigate if this relation between time scales is not only valid for linear springs,
but also valid for nonlinear ones.

Another way of modifying the bead-spring formalism in this paper is that where one does
not restrict oneself to bead-spring structures with a topology based upon a cubic lattice. In
this case we only have to find appropriate expressions for the topology matrjoc@sand
D belonging to some chosen bead-spring structarg. & structure with a topology based
upon a hexagonal lattice). An important piece of work concerning different kinds of Hookean
bead-spring structures was presented by Samehkdr[10, 11, 12]. Their work includes ring-
shaped structures, combs, cyclic combs, starskarghaped structures, but excludes crystal-
like structures as presented in this paper.
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Appendix

Nonzero matrix elements ofGS¢, G5¢ and Ds°¢

For a 3x3x3 bead-spring cube with a topology based upon a SC lattice, the nonzero matrix
elements of575¢andG*=¢, as defined by (5) and (9), are given by

=) 1
—1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
=) 1
—1 1
-1 1
—1 1
-1 1
—1 1
—1 1
-1 1
—1 1
=) 1
—1 1
-1 1
-1 T
—1 1
—1 1
=) T
N G®35:Q 8 S
G¥=186506R68]|= S
506, GCG = L T
-1 1
—1 1
= 1
-1 1
-1 1
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
S11
11
11
y 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
—~ G® 35® 3 ! Yy
sc__ _ —1 1
GT=1GR®6 O] = -1 L
-1 1
G 02,24 1 1
—1 1
y 1
-1 1
—1 1
= 1
-1 1
-1 1
11
11

in which we easily recognize the identity matridgeands, = 3; ® &5, the zero matrice®s, 5
and 0,,,, and the matrixG given by

G_—1 1 0
o 0 -1 1)°
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For a 3«3x3 bead-spring cube with a topology based upon a SC lattice, the nonzero matrix
elements oD 3¢, as defined by (10), are given by

3 ®6;,® 6, O15.6 O1s.0
D =]1SRGR5 VR385, O1g.2 ,
S®RBRVG V:QSRG ViR V:®4,

-1 1 1
-1 1 1
-1 1 1
— —1 1 1
-1 1 1
-1 1 1
-1 1 -1 1 1
-1 1 -1 1 1
-1 1 -1 1 1
-1 1 -1 1 1
-1 1 -1 1 1
-1 1 -1 1 1
1
1
11 1
-11 1
-11 -11 1
-11) 11| 1
-11 1
-11 1
11 11 1
11 11 1
11 -11 -11 1
-11 -11 -11 1
11 11 1
“11 “11 1
-11 -11 -11 1
-11 -11 -11 1
-11 -11 [|-11 -11 1
-11 -11 -11) 11 1

in which we easily recognize the identity matriggsds, s =38; ® 8., 815 =63 ® 653 ® &,, the
zero matrices) 5,6 and Oy, and the matrixG, the step matrix§ and the column vectov;
given by

0 O 1
-1 1 O
G= , S=11 0], Vo= 1
0O -1 1
1 1 1
Acknowledgments

The work described in this paper is part of the research program of the Foundation for Funda-
mental Research on Matter (FOM), which is supported financially by the Netherlands Organi-
zation for Scientific Research (NWO). We also wish to thank P.A. Nommensen for his useful
suggestions.



Rheological modeling with Hookean bead-spring cut®s BCCandFCCQ 95

References

1. A.l.M. Denneman and R. J. J. Jongschaap, A bead-spring model incorporating cyclic structures, non-equal
springs and beads with non-equal friction coefficiedtaf Rheol40 (1996) 589-612.

2. F. Harary, Graphical enumeration problems. In: F. Harary (&taph Theory and Theoretical Physics
London: Academic Press (1967) 1-41.

3. A. Dolan and J. Aldous\etworks and Algorithms: An Introductory Approadbhichester: John Wiley &
Sons (1993) 544 pp.

4. R. A Horn and C. R. Johnsomippics in Matrix AnalysisCambridge: Cambridge University Press (1991)
607 pp.

5. P.J. DavisCirculant Matrices New York: John Wiley & Sons (1979) 250 pp.

6. R.B.Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassdggnamics of Polymeric Liquids: Kinetic Theory
(vol. 2). New York: Wiley-Interscience (second ed., 1987) 437 pp.

7. P.E. Rouse, Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polyimef's.
Chem. Phys21 (1953) 1272-1280.

8. H. Kramers, Het gedrag van macromoleculen in een stromende vio@kiaficall (1944) 1-19.

9. B.van der Vorst, E. M. Toose, D. van den Ende, R. J. J. Jongschaap, and J. Mellema, Generalized Rouse
model for a dilute solution of clustered polymeRheologica Act&4 (1995) 274-280.

10. R. L. Sammler and J. L. SchraBead-Spring Model Predictions of Solution Dynamics for Flexible Ho-
mopolymers Incorporating Long-Chain Branches and/or Rings. (Tech. Rep. Wig)onsin-Madison:
Rheology Research Center (1987) 57 pp.

11. R. L. Sammler and J. L. Schrag, Bead-spring model predictions of solution dynamics for flexible
homopolymers incorporating long-chain branches and/or rivigeromolecule®1 (1988) 1132-1140.

12. R.L.Sammler and J. L. Schrag, Predictions of the ability of solution dynamics experiments to characterize

long-chain structure in flexible homopolymekdacromolecule®1 (1988) 3273—-3285.



